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Short-Range Correlations
• One of the most outstanding problems in modern 

nuclear physics. Sensitive to fundamental question, 
e.g., “how do nucleons form a nuclei?”

• Deep connection to the puzzle, EMC effect. 
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Short-Range Correlations
• One of the most outstanding problems in modern 

nuclear physics. Sensitive to fundamental question, 
e.g., “how do nucleons form a nuclei?”

• Deep connection to the puzzle, EMC effect. 

• What is Short-Range Correlations, aka, SRC?
• Nucleon-Nucleon interaction at very short distance;
• High momentum nucleon in the nucleus rest frame; a small 

fraction of the cross section, but could impact many 
aspects of nuclear effects. 

• pp, pn, nn pairs. 
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EMC vs SRC

How much nucleon 
PDF gets modified

How strong (many) the SRCs (pairs) are
(e.g., the probability of selecting a pair of SRC nucleons in A)

Effect of 
nuclear density?

A strong correlation between the two effects

Keep in mind: a2 is with respect to Deuteron 
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One hypothesis
• SRC is the ultimate cause of the EMC effect.

• Experiments (Jlab) have shown it is an universal ~20% 
of nucleons are in SRC pairs, starting from A > 12.

• These SRC pairs have high momentum (e.g., > 400-
600 MeV/c), and spatially very close to each other. 

• Nucleon PDF could be significantly modified for 
these pairs, but not modified for other nucleons. 
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One hypothesis
• SRC is the ultimate cause of the EMC effect.

• Experiments (Jlab) have shown it is an universal ~20% 
of nucleons are in SRC pairs, starting from A > 12.

• These SRC pairs have high momentum (e.g., > 400-
600 MeV/c), and spatially very close to each other. 

• Nucleon PDF could be significantly modified for 
these pairs, but not modified for other nucleons. 

• Almost all (>90%) of these SRC pairs are found to be 
similar to a quasi-deuteron at its high momentum tail. 

P N
Ø How well do we understand the 

baseline, deuteron?
Ø “Simplest” SRC pair to be studied.
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Deuteron – a “simple” pn system

PhysRevC.53.1689

k fm-1

1 fm-1 ~ 200 MeV/c

• Deuteron n(k) distributions have 
been measured decades ago, via 
inclusive scattering measurements

• k > 2-3 fm-1 it is the high momentum 
tail region, or SRC region

P N
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Deuteron – a “simple” pn system

PhysRevC.53.1689

k fm-1

1 fm-1 ~ 200 MeV/c

• Deuteron n(k) distributions have 
been measured decades ago, via 
inclusive scattering measurements

• k > 2-3 fm-1 it is the high momentum 
tail region, or SRC region

In order to understand the whole SRC picture, the baseline 
needs to be clear:

Ø What is the NN potential at high k?
Ø What are the dynamics at such short distance? Quarks exchange? 

Gluons exchange? Different potential via different processes?
Ø Are those nucleons PDF modified?

P N
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What can we do using Deuteron?
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“Diplon” disintegration
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First deuteron disintegration measurement in history

Maurice Goldhaber James Chadwick

There are still unknowns! 
80-90 years later, we could continue to measure “Diplon” breakups



(1) Diffractive VM production
𝛾*

J/psi

Pomeron exchange
p

n
d

p'

n' ZDC
NN potential

Case (1): one-nucleon scattering
Final-state interaction (FSI)?

RP
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(1) Diffractive VM production
𝛾*

J/psi

Pomeron exchange
p

n
d

p'

n' ZDC
NN potential

Case (1): one-nucleon scattering

Experimentally, we are looking for signatures, e.g., 
1) pT balance between proton (or neutron) and the q - Jpsi
2) Coincidence with a spectator nucleon, e.g., ZDC neutron
3) Need neutron’s energy and position to obtain four-momentum.

Final-state interaction (FSI)?

RP
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(1) Diffractive VM production
𝛾*

J/psi

Pomeron exchange
p

n
d

p'

n' ZDC
NN potential

Case (1): one-nucleon scattering

Experimentally, we are looking for signatures, e.g., 
1) pT balance between proton (or neutron) and the q - Jpsi
2) Coincidence with a spectator nucleon, e.g., ZDC neutron
3) Need neutron’s energy and position to obtain four-momentum.

Final-state interaction (FSI)?

RP

13
Would this process provides a different NN potential?



(2) Diffractive VM production
𝛾*

J/psi

Pomeron exchange

p

n
d

p'

n' ZDC
NN potential’

Case (2): two-nucleon scattering

Final-state interaction (FSI)?

RP

Miller, Sievert, and Venugopalan (2016)

Low pT J/psi
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(2) Diffractive VM production
𝛾*

J/psi

Pomeron exchange

p

n
d

p'

n' ZDC
NN potential’

Case (2): two-nucleon scattering

Final-state interaction (FSI)?

RP

Miller, Sievert, and Venugopalan (2016)

Experimentally, we are looking for signatures, e.g., 
1) Low pT J/psi but high pT back-to-back pn system: pT,J ~0 < pT,p= pT,n
We have to reconstruct full kinematics. 
(can we measure n(k) via this process? Not trivial to me)

Low pT J/psi
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(2) Diffractive VM production
𝛾*

J/psi

Pomeron exchange

p

n
d

p'

n' ZDC
NN potential’

Case (2): two-nucleon scattering

Final-state interaction (FSI)?

RP

Miller, Sievert, and Venugopalan (2016)

Experimentally, we are looking for signatures, e.g., 
1) Low pT J/psi but high pT back-to-back pn system: pT,J ~0 < pT,p= pT,n
We have to reconstruct full kinematics. 
(can we measure n(k) via this process? Not trivial to me)

Sensitive to gluonic configuration, might result in a different NN potential?

Low pT J/psi
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BeAGLE: Benchmark eA
Generator for LEptoproduction

BeAGLE is soon be published with version 1.0. Extremely useful for eA simulation study
17See talk by M.Baker and W.Chang



BeAGLE - Incoherent diffractive J/psi 

• Realistic n(k) momentum distribution of Deuteron
( BeAGLE: A>2 nucleus also have realistic n(k) distributions now)

• Diffractive J/psi production based on elementary 
process e+N using Pythia 6. 

(therefore, momentum and energy are not conserved due to on-shell 
mass of proton and neutron in Deuteron) 

• Deuteron breakup kinematics are needed to be 
fixed before looking at detector requirements

• No GEANT simulations are attempted yet

𝑞 + 𝑝 + 𝑛 = 𝐽′ + 𝑝) + 𝑛′
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Deuteron n(k) in BeAGLE
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For exotic configurations, we don’t know the potential. Alternatives are artificial. 
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kinematics

𝑞 + 𝑝 + 𝑛 = 𝐽′ + 𝑝) + 𝑛′
Exclusive process for both cases (1) and (2)

We cannot assume we know the beam particles. We do know deuteron as a whole 
(experimentally also with uncertainties), 
but we don’t know the momentum k for proton and neutron, and their off-shell mass 
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kinematics

𝑞 + 𝑝 + 𝑛 = 𝐽′ + 𝑝) + 𝑛′
Exclusive process for both cases (1) and (2)

We cannot assume we know the beam particles. We do know deuteron as a whole 
(experimentally also with uncertainties), 
but we don’t know the momentum k for proton and neutron, and their off-shell mass 
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𝛾∗, 𝑞(𝜈, 𝒒)
(𝟎, 𝟎, 𝟎,𝑴𝒅)

IRF

spectator nucleon, 𝑛′(𝐸4), 𝑷𝒏))

struck nucleon, 𝑝′(𝐸7), 𝑷𝒑))

Jpsi, 𝐽′(𝐸9), 𝑷𝑱))

Momentum equations:
1) 𝑞< = 𝑃7>,< + 𝑃9>,< + 𝑃4>,<
2) 𝑞@ = 𝑃7>,@ + 𝑃9),@ + 𝑃4>,@
3) 𝑞@ = 𝑃7>,B + 𝑃9>,B + 𝑃4>,B

Energy equations:
𝜈 +𝑀D = 𝐸9) + 𝐸7) + 𝐸4)



Kinematics in details
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BeAGLE can do Case (1) by default with an ad-hoc solution of 
conserving energy and momentum.



Kinematics in details
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BeAGLE can do Case (1) by default with an ad-hoc solution of 
conserving energy and momentum.

Pythia output

p
n n'

p'

q

true spectator, k

𝛾∗

J’
q-J’

“This study”:
Case(1) one-nucleon scattering:
• Based on Pythia output. Keep virtual photon, all px and py, and the spectator 

the same. Add k momentum back to struck nucleon with off-shell mass. 



Kinematics in details
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“This study”:
Case(1) one-nucleon scattering:
• Based on Pythia output. Keep virtual photon, all px and py, and the spectator 

the same. Add k momentum back to struck nucleon with off-shell mass. 

BeAGLE can do Case (1) by default with an ad-hoc solution of 
conserving energy and momentum.

Pythia output fix

p
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true spectator, k

Pmiss = -k
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Kinematics in details
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Case (2) two-nucleon scattering:
• Similar to case (1) - evenly distribute the “Pomeron” between both nucleons

BeAGLE can do Case (1) by default with an ad-hoc solution of 
conserving energy and momentum.

Pythia output fix

p
n n'

p'

q

true spectator, k

𝛾∗

J’
q-J’

p
n n'

p'

q

true spectator, k

Pmiss = -k

𝛾∗

J’
q-J’

“This study”:
Case(1) one-nucleon scattering:
• Based on Pythia output. Keep virtual photon, all px and py, and the spectator 

the same. Add k momentum back to struck nucleon with off-shell mass. 



No approximation – exact solutions
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𝑃9>,B = (qzkz*(TMath::Power(jx,2) + TMath::Power(jy,2) + TMath::Power(Mj,2) - TMath::Power(Mp,2) + TMath::Power(Md + 
numn,2) -

TMath::Power(px,2) - TMath::Power(py,2) - TMath::Power(qzkz,2)) -
sqrt(TMath::Power(Md + numn,2)*(TMath::Power(jx,4) + TMath::Power(jy,4) + TMath::Power(Md,4) -

2*TMath::Power(Md,2)*TMath::Power(Mj,2) + TMath::Power(Mj,4) - 2*TMath::Power(Md,2)*TMath::Power(Mp,2) -
2*TMath::Power(Mj,2)*TMath::Power(Mp,2) + TMath::Power(Mp,4) + 4*TMath::Power(Md,3)*numn -
4*Md*TMath::Power(Mj,2)*numn - 4*Md*TMath::Power(Mp,2)*numn + 
6*TMath::Power(Md,2)*TMath::Power(numn,2) - 2*TMath::Power(Mj,2)*TMath::Power(numn,2) -
2*TMath::Power(Mp,2)*TMath::Power(numn,2) + 4*Md*TMath::Power(numn,3) + TMath::Power(numn,4) -
2*TMath::Power(Md,2)*TMath::Power(px,2) - 2*TMath::Power(Mj,2)*TMath::Power(px,2) + 
2*TMath::Power(Mp,2)*TMath::Power(px,2) - 4*Md*numn*TMath::Power(px,2) -
2*TMath::Power(numn,2)*TMath::Power(px,2) + TMath::Power(px,4) - 2*TMath::Power(Md,2)*TMath::Power(py,2) -
2*TMath::Power(Mj,2)*TMath::Power(py,2) + 2*TMath::Power(Mp,2)*TMath::Power(py,2) -
4*Md*numn*TMath::Power(py,2) - 2*TMath::Power(numn,2)*TMath::Power(py,2) + 
2*TMath::Power(px,2)*TMath::Power(py,2) + TMath::Power(py,4) + 
2*(TMath::Power(Mj,2) + TMath::Power(Mp,2) - TMath::Power(Md + numn,2) + TMath::Power(px,2) + 

TMath::Power(py,2))*TMath::Power(qzkz,2) + TMath::Power(qzkz,4) -
2*TMath::Power(jy,2)*(-TMath::Power(Mj,2) + TMath::Power(Mp,2) + TMath::Power(Md + numn,2) + 

TMath::Power(px,2) + TMath::Power(py,2) - TMath::Power(qzkz,2)) + 
2*TMath::Power(jx,2)*(TMath::Power(jy,2) + TMath::Power(Mj,2) - TMath::Power(Mp,2) -

TMath::Power(Md + numn,2) - TMath::Power(px,2) - TMath::Power(py,2) + TMath::Power(qzkz,2)))))/
(2.*(Md + numn - qzkz)*(Md + numn + qzkz))

PS: there are some change of variables needed. But the solutions are in the 
same forms.

Similarly for Pz’ of struck nucleon



Energy and momentum conservation
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Before fix, BeAGLE After fix, soon in BeAGLE

Ein-Eout vs Pz,in- Pz,out

All following results are energy and momentum conserved. 
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Struck nucleon momentum
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IRF: struck nucleon can be either proton or neutron. Their kinematics are 
modified after the fix in this study. Will use for later studies. 
(BeAGLE ad-hoc deutfix does not change the kinematics of the struck 
nucleon much)

IRF: Ion rest frame



n(k) reconstructions

n(k) intrinsic momentum distribution from spectator. Same as input
• Only Case (1) can be used to reconstruct n(k)
• Case (2) would not tell us n(k), at least not directly. 29
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Detector assumptions
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• RP+B0:
• Perfect resolution
• 0-5 mrad and 7-22 mrad 100% efficient within 

these acceptance
(not realistic but effort is on-going, see A. Jentsch’s talk)



Detector assumptions
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• RP+B0 :
• Perfect resolution
• 0-5 mrad and 7-22 mrad 100% efficient within 

these acceptance
(not realistic but effort is on-going, see A. Jentsch’s talk)

• ZDC:
• Acceptance: 4 mrad
• Energy resolution: 

1. (85%/sqrt(E)+9.1%) STAR ZDC
2. (35%/sqrt(E)+2%) ZEUS ZDC

• Position resolution: ~ 10cm/sqrt(E) @ 28.8 meter 
away from IP



Detector assumptions
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• RP+B0 :
• Perfect resolution
• 0-5 mrad and 7-22 mrad 100% efficient within 

these acceptance
(not realistic but effort is on-going, see A. Jentsch’s talk)

• ZDC:
• Acceptance: 4 mrad
• Energy resolution: 

1. (85%/sqrt(E)+9.1%) STAR ZDC
2. (35%/sqrt(E)+2%) ZEUS ZDC

• Position resolution: ~ 10cm/sqrt(E) @ 28.8 meter 
away from IP

• Other things not considered:
• Jpsi reconstruction resolution, scattered electron, beam 

divergence, beam momentum, … and many more



Acceptance and resolution

• Large resolution effect at low k, and large acceptance effect at high k
• Bottle neck for resolution is the constant term. 
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Acceptance and resolution

6 mrad and 8 mrad are not different until 0.8-0.9 GeV. 
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“ZEUS-like” ZDC

ZDC < 6mrad

(35%/sqrt(E)+2%)

ZDC < 8mrad
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SNN in IRF
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sNN =(p’+n’)2 , ~ center of mass energy squared in the pn system

Case 1: One 
nucleon scattering, 
but it can be on 
proton or neutron. 
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SNN in IRF
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For this observable, the acceptance effect is more significant. 
(ZDC: <4mrad)

Case 1: One 
nucleon scattering, 
but it can be on 
proton or neutron. 



SNN in IRF
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ZDC < 6 or 8mrad can improve significantly. RP+B0 is kept the same 
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SNN vs k in IRF 
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Case 1 one-nucleon scattering:
• sNN vs k momentum, where k momentum is the intrinsic 

nucleon momentum.



t=(spectator-deuteron)2
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n’ is the four-momentum of the spectator.

ZDC < 4mrad
(35%/sqrt(E)+2%)

See Christian’s talk for 
extrapolating free neutron 
structure function using 
condition t-MN**2 = 0



t vs k
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• t measures how off-shell the spectator nucleon is, 
and as expected, correlated with k 

Case (1) one-nucleon scattering



Case 2 – two-nucleon scattering

• Neutron momentum distribution is no longer n(k) distribution. 
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The intrinsic momentum information is lost if both nucleons are hit. 
(Similar to FSI?)



Case 1 vs Case 2
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• Is this an observable to distinguish case 1 and case 2?
• More theoretical developments are needed.
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Summary
• Forward physics at an EIC would be an very important 

aspect of the program. Good forward detection is essential!
• Forward proton and neutron detections for light nuclei are 

(in some way) more challenging.

• For theorists, it is more important NOW to get the 
kinematics first, a rough estimate of resolutions on your 
observables (before… a lot of details). 

Detectors are being designed! 

• For experimentalists, should try to make some 
measurements using ZDC (or RP) with existing data and 
detector. Find out more info with realistic conditions. 
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Backup
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Case (1)
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